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Resonant forcing of a silent Hodgkin-Huxley neuron
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~Received 18 April 2002; published 30 October 2002!

Dynamical behavior of a silent Hodgkin-Huxley neuron subjected to external periodic perturbations is
investigated. Induced dynamics for this forced system, exhibit nonlinear resonance with respect to the forcing
frequency. Within theU-shaped resonance curve, both regular~phase locked! and irregular spike sequences are
invoked. For appropriate tuning frequencies, this simple system generates spike trains recordings similar to
ones observed in actual experiments.
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It is largely believed that the underlying excitability o
neurons seems crucial in efforts to understand the infor
tion processing of an individual neuron or neural netwo
@1–5#. It is commonly believed that the observed neuro
spike trains reflect the strengths of inputs that trigger
action potential of excitable neurons@6,7#. Therefore, the
spike sequences invoked vary in response to the app
stimuli ~inputs!. In the presence of a constant stimulus, em
gence of an irregular firing sequence with a constant m
frequency has been reported@1,2#. These experiments, whe
repeated, yielded unrelated spike sequences. However
mean firing frequency was essentially conserved. This le
the conjecture that the relevant part of the information
encoded in the mean frequency of neuronal firing@8#, thus
implying that interspike timing~activity! is largely irrelevant.

Many numerical studies involving generation and enc
ing of firing/spike sequences for neurons use the stand
integrate and fire~IF! model@9–11#. This discrete IF system
is largely accepted as a simple dynamical model for ne
spiking. The IF neuron is considered ‘‘silent’’ if it exhibit
fixed point dynamics. If the amplitude of the external stim
lus exceeds a certain critical value, the IF neuron can exh
self-excited oscillations. The intrinsic frequency of these
cillations is intimately related to the strength of the exter
stimulus. It was subsequently realized@9# that the IF model
system has a possible disadvantage as it allows for an a
cial reset of the action potential. Moreover, there is a co
plete absence of a refractory period for the provoked exc
tion. These potential drawbacks in the IF model led so
researchers to consider an alternate model system for st
ing neuronal spiking. Hodgkin-Huxley~HH! neurons@12#
are based on the well known HH system of equations@12#
that include nonlinear conductances of Na~sodium! and K
~potassium! ion channels. This model system~HH! is consid-
ered realistic as it adequately describes both the spiking
havior and refractory properties of real neurons. Similar
the IF neuron, the HH neuron can exhibit self-excited os
lations in the presence of external stimulus.

In this paper, we study the provoked dynamics of a sil
HH neuron~autonomous system exhibits fixed point dyna
ics! under the influence of sinusoidal perturbations. Sp
sequences induced by external forcing are studied as a f
tion of the parameters of a forcing signal~amplitude and
frequency!. The invoked spike trains exhibit both phas
locked ~periodic! dynamics and irregular spiking behavio
The provoked irregular dynamics are subsequently analy
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using return maps of interspike intervals~ISIs! and histo-
grams. The ISIs involve plotting periods of time between tw
successive spike maxima neglecting the basal state~small!
oscillations. A comparison between forced dynamics of
silent HH neuron and experimental results involving ne
ronal spiking is made.

The HH neuron can be simulated by the following set
coupled nonlinear ordinary differential equations:

CM

dV

dt
5I 2gKn4~V2VK!2gNam

3h~V2VNa!2gl~V2Vl !,

~1!

dn/dt5an~12n!2bnn, ~2!

FIG. 1. ~a! Time series of the silent HH neuron. The mod
parameters are specified in the text. The control parameteI 0

(.I c)522.85mA/cm2, such that the model system exhibits fixe
point dynamics.~b! The U-shaped curve encapsulates the region
parameter space~amplitude-frequency domain! where periodic
modulations ofI trigger spike trains in the model system.
©2002 The American Physical Society02-1
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FIG. 2. Details within theU-shaped curve reveal different types of phase locked and irregular dynamics consistent with the exist
a nonlinear resonance between the frequency of the external forcing and that of the damped oscillations around the stable focus~a! Time
series for the different firing patterns invoked. Also shown are the corresponding periodic modulations responsible for their incep~b!
Devil’s-staircase-like structure encapsulated by theU-shaped region forI 0523 mA/cm2. It indicates the inception of both rational an
irrational firing numbers under the influence of continuous periodic modulations.
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dm/dt5am~12m!2bmm, ~3!

dh/dt 5ah~12h!2bhh. ~4!

The first equation represents the total ionic current~I!
which is a sum of capacity current, current carried by pot
sium ions, current carried by sodium ions, and the leak c
rent. CM is the membrane capacity, whilegK , gNa , andgl
are the conductances of the respective channels.V is the
membrane potential, whileVK , VNa , andVl are proportional
to the equilibrium potential of the different channels. Gati
variables for the sodium and potassium channels are re
sented bym, h, andn. The a ’s and b ’s in the above equa
tions are defined as,

am50.1~V125!/$exp@~V125!/10#21%,

bn50.125 exp~V/80!; ~5!

am50.1~V125!/$@exp~V125!/10#21%,

bm54 exp~V/18!; ~6!

ah50.07 exp~V/20!, bh51/$exp@~V130!/10#11%. ~7!
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The model system is integrated using a fourth-ord
Runge-Kutta algorithm with a constant step size of 0.
The following set of initial conditions (V,n,m,h)
5(230 mV,0,0,0) was used and system parameters w
fixed at (CM ,gK ,gNa ,gl ,VK ,VNa ,Vl)5(1 mF/cm2,
36 mV21/cm2, 120 mV21/cm2, 0.3 mV21/cm2, 12 mV,
2115 mV, 210.613 mV), respectively. The robustness
numerical results was verified by adding small amounts
additive noise to the model equations. The control~bifurca-
tion! parameterI, when varied, results in the transformatio
of fixed point dynamics to self-exciting oscillations. More
over, there is a parameter domain of bistability where sta
focus and the limit cycle solution coexist. ChoosingI .I c ,
whereI c526.7 mA/cm2 ensures that the parameter regio
for oscillatory dynamics and bistability are precluded. Co
sequently forI .I c , independent of initial conditions, th
HH neuron is silent exhibiting fixed point dynamics. For th
forcing of this silent HH neuron the control parameterI is
varied sinusoidally,

I 5I 0sin~vt !, ~8!

ensuring thatI 0.I c .
Figure 1~a! shows the steady state dynamics of the sil

HH neuron~autonomous system!. The frequency of the dis-
2-2
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sipative dynamics in the vicinity of the stable focus is abo
0.425 rad/s. To reiterate, the periodic forcing of this neuro
achieved by sinusoidally varying the control parameterI un-
der the conditionI 0.I c . A frequency and amplitude scan i
the vicinity of the Hopf bifurcation reveals the domain whe
nonlinear resonance lowers the parameter threshold for
forced system resulting in inception of the spiking behav
TheU-shaped curve of Fig. 1~b! represents the new dynam
cal threshold~function of the frequency of superimpose
sinusoidal perturbations! for the forced system. The minim
of this curve corresponds to the optimum frequency
which spiking can be generated with minimum effort@small-
est amplitude~absolute! of external perturbations#. This fre-
quency is comparable to that of the dissipative dynamic
the vicinity of the stable focus. This is related to the fact th
the excitable system@Eqs.~1!–~4!# has a resonance at a fre

FIG. 3. ~a! Irregular time series provoked by the forcing fun
tion with the following characteristic (I 0522.47mA/cm2,v
50.67 rad/ms). The other parameters are the same as mention
the text.~b! Return map with 34 159 interspike intervals~ISIs! of
large spikes for the time series of~a!. Only maxima greater than 90
mV were considered.~c! Histograms for the ISIs of~b!. The solid
curve is obtained by joining the successive maxima of the nea
neighbor spacing distribution.
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quency close to the imaginary part of the eigenvalues of
flow dynamics linearized around its fixed point@13#. In Ref.
@13#, the authors compute a similarU-shaped curve for an
excitable chemical system.

Detailed investigation of invoked dynamics within th
U-shaped curve reveals behavior consistent with tw
frequency nonlinear resonance. To reiterate, the two inter
ing frequencies are,~a! frequency of the sinusoidal perturba
tion and ~b! frequency of dissipative dynamics around t
stable fixed point of the autonomous system. Figure 2~a!
shows four induced spike profiles and the correspond
forcing functions. The provoked dynamics within th
U-shaped curve can be classified into two categories:~a! a
composite of basal state oscillations and spikes,~b! continu-
ous spiking behavior only. Firing number~number of
excitations/number of perturbations! was calculated for the

d in

st-

FIG. 4. ~a! Irregular time series provoked by a forcing functio
with the following characteristic (I 0522.85mA/cm2,v50.71 rad/
ms!. The other parameters are the same as mentioned in the tex~b!
Return map with 36 467 interspike intervals~ISIs! of large spikes in
the system of~a!. Only maxima larger than 90 mV were considere
~c! Histograms for the ISIs of~b!. It shows the existence of pre
ferred frequency for the induced spiking.
2-3
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parameter domain encapsulated within theU-shaped curve.
It reveals a devil’s-staircase-like structure as shown in F
2~b!. This existence of devil’s-staircase-like structure w
clearly demarcated phase-locked domains is typical of
forced oscillatory/excitatory dynamics. Our simulatio
mimick the experimental recordings for the normal squ
axons@14#. The membrane potential responses in squid
ons under periodic stimulations included~a! phase-locked
modes of response and~b! devil’s-staircase-like structure in
the firing number of the forced system.

It is interesting to observe that apart from the invok
periodic dynamics, there is a region of parameter sp
~within the U-shaped curve! where appropriate forcing fre
quencies provoke irregular spiking behavior. This too is c
sistent with the experimental findings for the normal sq
axons@14#. In these experiments, for certain parameters
the superimposed periodic stimulation, irregular spike p
files were evoked for the forced squid axon@14#. This irregu-
larity was attributed to the random switching between pe
odic subthreshold oscillation~nonfiring phase! and the firing
phase~spike!. This parameter region~numerical! for irregu-
lar firing was examined in further detail. Figure 3~a! shows
an irregular spike sequence invoked for the forced sys
within theU-shaped region. The perturbation parameters
provided in the corresponding figure caption. Between t
successive spikes, the trajectory is confined in the vicinity
a weakly unstable period-1 solution. However, eventually
dynamics diverge and enter a region of state-space dom
from where a spike is initiated. This process is repeated~af-
ter every spike! but not replicated rendering the invoked tim
series chaotic. Figure 3~b! shows the return map of the ISI
for the irregular time series of Fig. 3~a!. ISIs are the periods
of time between two successive spike maxima disregard
the small oscillations in between. The calculated histogr
distribution is shown in Fig. 3~c!. Our analysis indicates tha
although the provoked process is not Poisson, there d
seem to be an exponential-type decay in the probability
tribution @as seen in Fig. 3~c!# for longer firing periods.

Figure 4~a! shows another irregular spiking sequence g
erated within theU-shaped region. The parameters of t
forcing function are provided in the corresponding figu
caption. Figure 4~b! shows the return map of the ISIs for th
irregular time series. This plot shows a significant reduct
of the ISI distribution compared to that of Fig. 3~b!. There
exists a sharp border for small ISI values and in addition
s
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pattern of orthogonal lines is discernible. Figure 4~c! shows
the histogram distribution for the spiking sequence of F
4~a!. The distribution now is accumulated around the me
firing period of 36.5 ms. This implies that, the forced H
neuron possesses a preferred~mean! frequency of spiking
activity.

Our results, within the resonance curve, indicate that b
regular and irregular spike profiles can be provoked via
small amplitude forcing of the silent HH neuron. Furthe
more, two different types of irregular spike sequences
invoked. Firstly there are irregular spike sequences wh
corresponding ISIs are scattered@Fig. 3~b!#. Second, in close
proximity, there are parameter domains where an increa
spiking frequency is observed in the invoked irregular tim
series. For these time series, clearly demarcated pattern
pear in the ISI return map@Fig. 4~b!#. Moreover, histogram
distribution of Fig. 4~c! has a dominant peak implying
preferred spiking frequency.

In this paper, effects of external modulations on stea
state~fixed point! neuronal dynamics were studied. Induc
spike trains in the presence of external stimuli are conside
pertinent to information processing in neurons and neu
networks. In real systems, these external modulations co
be caused by various neurotransmitters and/or by syna
inputs. We find that for a range of forcing frequencies t
threshold of firing for the silent HH neuron can be lower
via a nonlinear resonance. Moreover, spiking behavior
voked via continuous perturbation of a silent HH neur
system, can generate spike recordings similar to ones
served in actual experiments@14#. Apart from these experi-
ments, the emergence of phase locking to superimposed
turbing frequencies has been observed in the auditory sys
of barn owl @15# and squid giant axons@16#. The work of
Kaplanet al. @16# shows different types of phase locked a
chaotic dynamics. However, we were unable to find the
terministic subthreshold chaos reported by them. In
simulations, successive spikes are separated by dynami
the vicinity of a weakly unstable periodic orbit. Our nume
cal spike sequences are provoked by small amplitude pe
bations with appropriate tuning frequencies, which might n
be the case in the experiments mentioned earlier. Co
quently, the system parameters in these experiments are
necessarily within theU-shaped nonlinear resonance cur
obtained for the HH model.
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